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Abstract — This paper introduces a new technique 

that allows us to measure the admittance conversion 
matrix of a two-port device, using a Nonlinear Vector 
Network Analyzer. This method is applied to extract the 
conversion matrix of a 0.2 µµµµm pHEMT, driven by a 4.8 
GHz pump signal, at different power levels, using an 
intermediate frequency of 600 MHz. The issue on data 
inconsistency due to phase randomization among 
different measurements is discussed and a proper pre-
processing algorithm is proposed to fix the problem. 
The output of this work consists of a comprehensive 
experimental evaluation of up- and down-conversion 
maximum gain, stability, and optimal RF and IF 
impedances. 

I. INTRODUCTION 

Nonlinear vector network analyzers (NVNAs) were 
recently introduced. They have been used to 
characterize and model nonlinear microwave devices 
and circuits [1-4]. The purpose of this paper is to 
apply large-signal vectorial measurements to the 
optimum design of frequency converters. Our 
approach will allow us to skip the use of nonlinear 
device models and large-signal analysis by means of 
the experimental determination of the conversion 
matrix [5-7]. The results of [6] effectively describe 
how to apply such a matrix to mixer design. In the 
present paper is introduced a detailed conditioning 
process in order to avoid phase ambiguity that may 
arise in the approach described in [7]. The paper is 
organized as follows. The characterization method is 
described and applied to a pHEMT under large signal 
pumping, with a number of experimental results 
describing the potential of this approach for mixer 
design. 

II. MEASUREMENT SETUP 

The NVNA consists of a 4-channel data acquisition 
system and provides magnitude and phase values of 
the incident and scattered complex wave variables at 
both ports of the device on a user-defined frequency 
grid. In particular, our set-up consists of two RF 
sources, a DC power supply, four directional 
couplers, an RF to IF down converter and a data 
acquisition system [8]. The two RF sources can be 
combined to supply the desired excitations at port 1 

or port 2. An appropriate amplitude and phase 
calibration procedure allows the correction of the 
“raw” quantities. The set-up is shown in Fig. 1, 
where a large signal is applied to the DUT’s port 1 
while a second signal, namely a small level signal is 
switched to port 1 and port 2 by an external switch. 
The NVNA is able to measure both the harmonics of 
the large signal and the mixing products, if the 
calibration grid contains the frequencies of interest.  

Although the user can define any frequency 
(fundamental, 2nd harmonic, ...) and variable (a1, a2, 
v1, v2, ...) to be the phase reference, phase-locking to 
a signal at a frequency different from the lowest one 
would bring an ambiguity in the phase values of 
signals at lower frequencies. This results in the need 
for a proper processing of the measured data that will 
be dealt in the next session. 
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Fig. 1. Set-up adopted for the conversion matrix 
extraction based on NVNA (the bias part of the set is not 
shown). 

III. EXTRACTION OF THE CONVERSION MATRIX 

Let us consider the DUT pumped at port 1 by a 
large signal voltage PV , whose fundamental 

frequency is Pω . If small-signal voltage excitations 

are added at both ports, with frequencies 0ω  near any 
harmonic of the pump, then current responses will 
arise. The relationships relating the current and 
voltage phasors at these frequencies are linear, and 
they are ruled by the conversion matrix: 

[ ]= ⋅I Y V  



 

The symbol [ ]Y  represents the conversion matrix, 
which is, in fact, a linearization of the DUT, under 
the large-signal state, with respect to the small 
signals. The current and voltage column vectors are 
defined so that they contain the intermodulation 
components at the frequencies 0k Pkω ω ω= + , with 

, , 0, ,k N N= − … …  and at both ports: 

* * T
1, 1,0 1, 2, 2,0 2,( , , , , , , , , , )N N N NI I I I I I− −=I … … … … ; 

* * T
1, 1,0 1, 2, 2,0 2,( , , , , , , , , , )N N N NV V V V V V− −=V … … … … . 

This implies that the local oscillator pump takes part 
of the linearized system. Let us remark for now that, 
as a straightforward consequence of it, the matrix 
[ ]Y  will depend on the parameter of the pump 
voltage excitation. If a number of current-and-voltage 
vector pairs are collected, resulting from a proper 
number of ‘M’ different experiments, provided that 
the conversion matrix is the same, this allows us to 
find the matrix [ ]Y . Tiling the current and voltage 
columns matrices we get 

( ) ( ) ( ) ( )1 1[ , , ] [ ] [ , , ]M M= ⋅I I Y V V… …  

and finally 
( ) ( ) ( ) ( )1 1 1[ ] [ , , ] [ , , ]M M −= ⋅Y I I V V… … , 

 where the vector superscript indicates one of the 
2 (2 1)M N= ⋅ +  experiments. 

Two important things are worth remarking: firstly, 
in order to assure that the voltage matrix to be 
inverted is non-singular, measurements are performed 
by applying the small signal at a different frequency, 
or to a different port of the network, in each different 
experiment. Secondly, in order to assure that the 
matrix [ ]Y  is the same all over the experiments, the 
local oscillator pump voltage excitation must be the 
same for each measurement, according to the above 
discussion. That is to say, all the pump voltage 
harmonics at the two ports must be represented by 
identical voltage phasors, with identical amplitudes 
and phases. An uncertainty of the latter may be due to 
the NVNA set-up as recalled above. 

The identity of amplitudes is easily obtained by 
applying a constant pump power level all over the 
experiments, as the small signal is assumed not to 
influence the large-signal behaviour. The identity of 
phases, however, requires a little more attention. In 
fact, in a set of experiments, the phases of pump 
voltage phasors are randomly distributed. A data pre-
processing is required in order to realign phases. As 
the steady-state condition is assumed, no additional 
information is required, but just a change in the time 
reference system. In a given experiment ‘m’, once the 
pump voltage fundamental frequency phasor is read, 
its time-domain representation can be written: 

( ) ( ) ( )exp( )m m
P P P Pv t V j t jω φ= + . 

Then, a new time reference system is chosen so that 

( )
0( ) exp( )m

P P Pv t V j t jω φ′ ′= + , 

the arbitrary angle 0φ  being constant over the 
experiments. In order to make it true, a relationship 
will exist to determine the time reference shift: 

( ) ( )
0( )m m

P Pt t t tφ φ ω′ = + − = + ∆ . 

This shift must be applied to each current and 
voltage phasor of the experiment m; then, the generic 
phasor ( )

,
m

l kX  at the port l and at the radial frequency 

kω  will have the following time domain 
representation in the new reference: 

( ) ( ) ( ) ( )
, , ,( ) exp( ( )  )m m m m

l k l k k l kx t X j t t j Xω′ ′= − ∆ + ∠ , 

where X can be replaced with either V or I. It can be 
easily shown that it is equivalent to using the 
following frequency domain formula: 

( ) ( ) ( )
, , 0

 exp( ( ) )m m m

l k l k P k PX X j φ φ ω ω′ = − − ⋅ , 

the prime indicating that the phasor is relative to the 
new time-reference-system. Fig. 2 offers a qualitative 
insight in the application of this method, by means of 
an example with arbitrary sine waves at two different 
frequencies and with unrelated phases. In particular, 
the lower frequency signal represents the reference 
used by the NVNA and the higher frequency signal 
represent the pump signal. The amplitude differences 
between sinewaves have been artificially introduced 
for the sake of the clarity; this is obviously absent in 
the experiments under discussion. 

Once the phasors have been pre-processed in this 
way, we can correctly extract the conversion matrix 
in the way previously discussed. 
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Fig. 2. Example of phase realignment method: time-
domain signals aligned to the lowest frequency (top) and 
aligned to the pump signal (bottom) pre-processing data 

IV. EXPERIMENTAL RESULTS 

The technique depicted above has been applied to 
extract the conversion matrix of a 0.2 µm pHEMT, 
for a pump signal at 4.8 GHz. The experiments have 



 

been carried out for power levels ranging from –10 
dBm to +10 dBm and for the bias points: VD = 3 V, 
VG = −0.45 V, −0.825 V,  −1.2 V. The NVNA was 
calibrated with a 600MHz grid up to 19.8 GHz, 
considering 32 harmonics. In order to collect an 
adequate set of small signal components, a test signal 
of –30 dBm was repetitively applied to port 1 and 
then port 2 at 600 MHz, 4.2 GHz, 5.4 GHz, 9 GHz, 
10.2 GHz, 13.8 GHz, 15 GHz, 18.6 GHz, and 19.8 
GHz, (i.e., Pf = 4.8 GHz and 0f = 600 MHz and N = 
4). The power levels were selected by trading off 
between the constraints due to the linearity of the 
DUT and the dynamic range of the NVNA. 
Measurements of the currents and voltages at those 
frequencies were collected, obtaining the required set 
of data. Figs. 3-5 show some representative elements 
from matrices extracted with the above method, as a 
function of power levels. 
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Fig. 3. Magnitude of the coefficients: y2111 (squares), 
y2121 (diamonds), y2131 (circles) and y2141 (triangles). 
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Fig. 4. Phase of the coefficients: y2111 (squares), y2121 
(diamonds), y2131 (circles) and y2141 (triangles). 
 

Figs. 3-4 report magnitude and phase values of 
y21,11, y21,21, y21,31 and y21,41, which represent the ratio 
between the current at port two at 5.4 GHz, 10.2 
GHz, 15 GHz, 19.8 GHz, and the voltage at port one 
at 5.4 GHz. 

Fig. 5 reports the up- and down-conversion related 
parameters from which is easy to see the optimum 
LO pump level required for the frequency 
conversion, located around +2 dBm. A two-port 
admittance matrix is quickly derived, after the 

conversion matrix has been found. In fact, if one 
forces the small signal to be a single tone at the input 
and output ports, the new matrix is found by simply 
retaining the corresponding rows and columns only. 
In practice, it is equivalent to short all the 
intermodulation products but the two selected 
frequencies, done in frequency converters. 
Subsequently, the analysis can proceed by using 
traditional small-signal amplifier theory, even though 
input and output frequencies are different. 
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Fig. 5. Magnitude of the coefficients:  y2110 (squares), 
y2101 (circles). 

 
A frequency up-converter (600 MHz to 5.4 GHz) 

and a down-converter (5.4 GHz to 600 MHz) are 
considered. Maximum conversion gain (MCG) has 
been calculated for each pump power level, by means 
of well-known formulas [6], and it is shown in Fig. 6. 
A stability analysis was also carried out for each 
point, and so it was possible to distinguish whether 
the network was unconditionally stable, or not. If not, 
a maximum stable conversion gain was evaluated 
instead of MCG; conditionally stable points are 
represented as isolated stars in the graph. 
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Fig. 6. Magnitude of the maximum conversion gain at 
5.4 GHz ↔ 600 MHz in down-conversion (circles) and up-
conversion (squares), and of maximum stable gain if not 
unconditionally stable (stars). 
 

Where stability is unconditional, optimal RF-IF 
impedances have been calculated by imposing 
simultaneous conjugate match and considering them 
as if they were source and load impedances of a 



 

linear two-port network. The corresponding Smith 
charts are reported in Figs. 7-8. 
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Fig. 7. Smith chart of optimal RF-IF impedances at the 
input port in down-conversion (circles) and up-conversion 
(squares). 
 

The optimum input impedance, YSopt, shows a 
highly resistive behavior, slightly inductive, as 
expected by the physics of the input pHEMT port at 
600 MHz (up-conversion), because it is mainly an 
open circuit with a capacitive reactive contribution. 
The same port shows a more meaningful capacitive 
behavior in the down-conversion mode and as a result 
the YSopt is more inductive. 
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Fig. 8. Smith chart of optimal RF-IF impedances at the 
output port in down-conversion (circles) and up-conversion 
(squares) as a function of the pump level. 

 
Similar considerations hold for the output port. The 

mixer design can be completed simply by the 
synthesis of linear networks without the requirement 
of nonlinear CAD tools and accurate nonlinear device 
model. 

IV. CONCLUSION 

We have introduced a technique to experimentally 
extract the conversion matrix from vectorial large-
signal measurements. The method considers a pre-
processing on the measured data able to avoid any 
phase ambiguity that may arise in multisine absolute 
phase measurement. It has been applied to investigate 
the conversion properties of a gate pumped 0.2 µm 
pHEMT in frequency conversion mode, as functions 
of the pump signal. The experimental results allow us 
to determine the pump level, the bias voltage and the 
IN/OUT terminations to optimize the design. It is 
believed that the method constitutes an effective 
improvement in the behavioral description of active 
devices for the mixer design.  
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